ESPACIOS VECTORIALES. APLICACIONES LINEALES (hoja 1 curso 07/08)

1. Sean $U(\mathbb{R})$, $V(\mathbb{R})$ espacios vectoriales. Si $f:U\to V$ es una aplicación, indica en qué casos es una aplicación lineal.

1.
$$U = \mathbb{R}^3$$
, $V = \mathbb{R}^2$ $f((x_1, x_2, x_3)) = (x_1 + x_3 - 7x_2, 3x_1 - x_2^2)$

2.
$$U = \mathbb{R}^2$$
, $V = \mathbb{R}^4$ $f((x_1, x_2)) = (x_1 x_2, 3x_1 - 2x_2, -x_1, 9)$

3.
$$U = \mathbb{M}_2, V = \mathbb{R}^3 f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a+b+c+d, -a+b, c-2d)$$

- 2. Sean $U(\mathbb{R})$, $V(\mathbb{R})$ espacios vectoriales referidos a sus bases canónicas B_U y B_V respectivamente. Se considera la aplicación lineal $f: U \to V$, el subespacio vectorial A de U y el subespacio vectorial C de V Se pide:
 - 1. Matriz de f respecto de las bases B_U y B_V .
 - 2. Ecuaciones, dimensión y una base de f(A)
 - 3. $f^{-1}(\overrightarrow{y}), \overrightarrow{y} \in V$.
 - 4. $f^{-1}(C)$.

Para los siguientes casos:

1. (a)
$$\begin{cases} U = \mathbb{R}^3, V = \mathbb{R}^2 \\ f((x_1, x_2, x_3)) = (x_1 + x_2 - x_3, 2x_1 + x_3) & C = \{(y_1, y_2) \in \mathbb{R}^2 / y_2 = 0\} \\ A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 = 0, x_2 - 2x_3 = 0\} & \overrightarrow{y} = (-1, 3) \end{cases}$$
(b)
$$\begin{cases} U = \mathbb{R}^2, V = \mathbb{R}^3 \\ f((x_1, x_2)) = (x_1 - 2x_2, 3x_1 + x_2, x_1) & C = \{(y_1, y_2, y_3) \in \mathbb{R}^3 / y_1 + y_3 = 0\} \\ A = \{(x_1, x_2) \in \mathbb{R}^2 / x_1 + x_2 = 0\} & \overrightarrow{y} = (1, -2, 0) \end{cases}$$
(c)
$$\begin{cases} U = \mathbb{M}_2, V = \mathbb{R}^3 \\ f\left(\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}\right) = (x_1 + x_2 - 2x_3, x_2 + x_3, 3x_1) \\ A = \left\{\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}\right) \in \mathbb{M}_2 / x_2 = 0, x_3 - x_1 = 0 \end{cases} \qquad \overrightarrow{y} = (1, 0, 1) \\ C = \{(y_1, y_2, y_3) \in \mathbb{R}^3 / y_3 = 0\} \end{cases}$$

3. Sean $U(\mathbb{R})$, $V(\mathbb{R})$ espacios vectoriales cuyas bases canónicas son B_U y B_V respectivamente. Se considera la aplicación lineal $f:U\to V$. Se pide:

- 1. Matriz de f respecto de las bases B_U y B_V .
- 2. Ecuaciones, dimensión y una base de Im(f).
- 3. Ecuaciones, dimensión y una base de Ker(f).

Para los siguientes casos:

- 1. (a) $U = \mathbb{R}^3$, $V = \mathbb{R}^3$, $f((x_1, x_2, x_3)) = (x_1 + 2x_3, x_1 + x_2 + 3x_3, -x_2 x_3)$
 - (b) $U = \mathbb{R}^2$, $V = \mathbb{R}^2$, $f((x_1, x_2)) = (x_1 x_2, 2x_1 2x_2)$

(c)
$$U = \mathbb{M}_2, V = \mathbb{P}_3, f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a+b+c+d)+(a+c)x-(a+b)x^2+(c+d)x^3$$

(d)
$$U = \mathbb{R}^2 V = \mathbb{P}_2$$
, $f((a,b)) = 2b + ax + (a-b)x^2$

(e)
$$\begin{cases} U = \{M \in \mathbb{M}_3/M \text{ es diagonal}\}, V = \mathbb{R}^3 \\ f\left(\begin{pmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{pmatrix}\right) = (x_2, x_3 - x_1, x_1 + x_2) \end{cases}$$

4. Sean $U(\mathbb{R})$, $V(\mathbb{R})$ espacios vectoriales cuyas bases canónicas son $B_U = \{\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3\}$ y $B_V = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}$ respectivamente. Se consideran las aplicaciones lineales $f: U \to V$ y $g: U \to V$ tales que

$$f((x_1, x_2, x_3)) = (5x_1 + x_2 + x_3, x_2 + 4x_3, x_1 - 6x_3, 0)$$

$$g((x_1, x_2, x_3)) = (2x_3, -x_1 + x_2 + x_3, 0, 4x_2 - x_1)$$

Se pide:

- 1. Expresión matricial de f respecto de las bases B_U y B_V .
- 2. Expresión matricial de g respecto de las bases B_U y B_V .
- 3. Expresión matricial de 2f + 3g respecto de las bases B_U y B_V .
- 5. Sea $U(\mathbb{R})$, $V(\mathbb{R})$, $W(\mathbb{R})$ espacios vectoriales cuyas bases canónicas son $B_U = \{\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3\}$, $B_V = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3, \overrightarrow{u}_4\}$ y $B_W = \{\overrightarrow{w}_1, \overrightarrow{w}_2\}$ respectivamente. Se consideran lan aplicaciones lineales $f: U \to V$. $g: V \to W$, tales que

$$f((x_1, x_2, x_3)) = (x_2 - 2x_3, x_2 + x_3, 0, x_1 - x_3,)$$

$$g((x_1, x_2, x_3, x_4)) = (2x_3, -x_1 + x_2 + x_3)$$

Se pide:

- 1. Expresión matricial de f respecto de las bases B_U y B_V .
- 2. Expresión matricial de g respecto de las bases B_V y B_W .
- 3. Expresión matricial de $g \circ f$ respecto de las bases $B_U y B_W$.

ESPACIOS VECTORIALES. APLICACIONES LINEALES (hoja 2 curso 07/08)

- 6.- Sean $U(\mathbb{R})$, $V(\mathbb{R})$ y $W(\mathbb{R})$ espacios vectoriales cuyas bases canónicas son B_U , B_V y B_W respectivamente. Sean $f: U \to V$, $g: V \to W$ y $h: U \to V$ aplicaciones lineales. Se pide:
 - 1. Matriz de f respecto de las bases B_U y B_V .
 - 2. Matriz de g respecto de las bases B_V y B_W .
 - 3. Matriz de h respecto de las bases B_U y B_V .
 - 4. Matriz de la aplicación gof respecto de las bases B_U y B_W .
 - 5. Clasificar las aplicaciones f, g, gof.
 - 6. Matriz de la aplicación 3f(x) 2h(x) respecto de las bases B_U y B_V .
 - 7. Matriz de g^{-1} respecto de las bases B_V y B_W .
 - 8. Ecuaciones del cambio de base de B_U a B_U' siendo B_U' base de U
 - 9. Ecuaciones del cambio de base de B_V a B_V' siendo B_V' base de V
 - 10. Matriz de frespecto de las bases B_U^\prime y B_V^\prime

(a)
$$U = \mathbb{R}^3, V = \mathbb{R}^2, W = \mathbb{R}^2$$

 $f((x_1, x_2, x_3)) = (x_1 + 2x_3, 4x_2 - 3x_3)$
 $g((x_1, x_2)) = (2x_1, x_1 + x_2)h((x_1, x_2, x_3)) = (-x_3, x_2)$
 $B'_U = \{(1, 1, 1), (-1, 1, 0), (0, 0, 1)\}$
 $B'_V = \{(1, 2), (3, -1)\}$
(b) $U = \mathbb{R}^2, V = \mathbb{R}^3, W = \mathbb{R}^3$

(b)
$$U = \mathbb{R}^2, V = \mathbb{R}^3, W = \mathbb{R}^3$$

 $f((x_1, x_2)) = (x_1 - 2x_2, 3x_1 + x_2, x_1)$
 $g((x_1, x_2, x_3)) = (x_1 - x_3, 3x_2, x_1 + x_3)$
 $h((x_1, x_2)) = (-5x_1 + x_2, -x_2, x_1)$
 $B'_U = \{(1, 1), (-1, 1\}$
 $B'_V = \{(1, 2, 0), (1, 3, -1), (0, 2, 0)\}$

(c)
$$U = \mathbb{M}_2, V = \mathbb{P}_3, W = \mathbb{R}^4$$

 $f\left(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}\right) = a_1 + (a_2 - a_3)x + (a_3 - a_2)x^2 + a_4x^3$
 $g(b_1 + b_2x + b_3x^2 + b_4x^3) = (b_1 + b_2, b_2 - b_4, -b_3, -b_4)$

$$h\left(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}\right) = (a_4 - a_3) + a_1 x + 2a_3 x^2 + (a_2 - a_1) x^3$$

$$B'_U = \left\{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}$$

$$B'_V = \left\{1 + x, x^2 - x^3, 1 - 2x^2, 2x + x^3\right\}$$
(d)
$$U = \mathbb{R}^2, V = \mathbb{P}_2, W = \mathbb{R}^3$$

$$f((a_1, a_2)) = (a_1 - 3a_2) x^2$$

$$g((b_1 + b_2 x + b_3 x^2)) = (b_1 + b_3, b_2 - b_3, b_1)$$

$$h((a_1, a_2)) = 2a_1 + a_2 + a_1 x - a_2 x^2$$

$$B'_U = \left\{(-1, 3), (-3, 2)\right\}$$

$$B'_V = \left\{x, x - 1, x^2 - 2\right\}$$

ESPACIOS VECTORIALES. APLICACIONES LINEALES (hoja 3 curso 07/08))

7.- Sean $V(\mathbb{R})$ y $W(\mathbb{R})$ espacios vectoriales cuyas bases canónicas son $B_V = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ y $B_W = \{\overrightarrow{u_1}, \overrightarrow{u_2}\}$, respectivamente. Sea $f: V \to W$ una aplicación lineal tal que:

$$f(\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3}) = 3\overrightarrow{u_1} + \overrightarrow{u_2}$$

$$f(-\overrightarrow{e_1} + \overrightarrow{e_2}) = -\overrightarrow{u_1} + 4\overrightarrow{u_2}$$

$$f(\overrightarrow{e_3}) = 2\overrightarrow{u_1} - 3\overrightarrow{u_2}$$

Se consideran las bases $B'_V = \{(1, 1, 1), (-1, 1, 0), (0, 0, 1)\}$ y $B'_W = \{(1, 2), (3, -1)\}$ de $V(\mathbb{R})$ y $W(\mathbb{R})$ respectivamente, se pide:

- 1. Matriz de f respecto de las bases B_V y B_W .
- 2. Ecuaciones del cambio de base de B_V a B'_V .
- 3. Ecuaciones del cambio de base de B_W a B'_W .
- 4. Matriz de f respecto de las bases B'_V y B'_W

8.- Se consideran los espacios vectoriales \mathbb{R}^2 y \mathbb{R}^3 cuyas bases canónicas son $B_{\mathbb{R}^2} = \{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ y $B_{\mathbb{R}^3} = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$, respectivamente. Sea $f : \mathbb{R}^2 \to \mathbb{R}^3$ una aplicación lineal tal que:

$$\overrightarrow{e_1} + \overrightarrow{e_2} \in K \text{ erf}$$

$$\overrightarrow{e_1} - \overrightarrow{e_2} \in f^{-1}(\overrightarrow{u_1} + -2\overrightarrow{u_2} - \overrightarrow{u_3})$$

Si $B'_{\mathbb{R}^2} = \{(1,1), (-1,1)\}$ y $B'_{\mathbb{R}^3} = \{(1,2,0), (1,3,-1), (0,2,0)\}$ son bases de \mathbb{R}^2 y \mathbb{R}^3 respectivamente se pide:

- 1. Matriz de f respecto de las bases $B_{\mathbb{R}^2}$, $B_{\mathbb{R}^3}$.
- 2. Ecuaciones del cambio de base de $B_{\mathbb{R}^2}$ a $B'_{\mathbb{R}^2}$.
- 3. Ecuaciones del cambio de base de $B_{\mathbb{R}^3}$ a $B'_{\mathbb{R}^3}$
- 4. Matriz de f respecto de las bases $B'_{\mathbb{R}^2}$, $B'_{\mathbb{R}^3}$.
- 9. Sean $V = \mathbb{R}^3$, $W = \mathbb{P}_3$ espacios vectoriales cuyas bases canónicas son $B_V = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ y $B_W = \{1, x, x^2, x^3\}$, respectivamente. Sea $f: V \to W$ una aplicación lineal tal que:

$$Kerf = \{x \in \mathbb{R}^3 / x_1 + x_2 + x_3 = 0\}$$

$$f(\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3}) = 1 + 2x - x^2 - 3x^3$$
Se pide:

- 1. Matriz de f respecto de las bases B_V y B_W .
- 2. Clasifica la aplicación f.

ESPACIOS VECTORIALES. APLICACIONES LINEALES (hoja 4 curso 07/08))

- 10.- Sean $U(\mathbb{R})$, $V(\mathbb{R})$ espacios vectoriales cuyas bases canónicas son B_U y B_V respectivamente. Se considera la familia de aplicaciones lineales $f_\alpha: U \to V$ con $\alpha \in \mathbb{R}$.
 - 1. Hallar la matriz de f_{α} respecto de las bases B_U y B_V .
 - 2. Estudiar las dimensiones de los subespacios $\operatorname{Im}(f_{\alpha})$ y $\operatorname{Ker}(f_{\alpha})$ en función del parámetro α .
 - 3. Clasificar la aplicación según los valores de α .

(a)
$$U = \mathbb{R}^3$$
, $V = \mathbb{R}^3$

$$f((x_1, x_2, x_3)) = (\alpha x_1, -x_1 + x_2 - \alpha x_3, \alpha x_2 - x_3)$$

(b)
$$U = \mathbb{R}^4$$
, $V = \mathbb{R}^3$

$$f((x_1, x_2, x_3, x_4)) = (x_1 + \alpha x_2 + x_3, \alpha x_4, -x_1 - \alpha x_2 + \alpha x_3 + x_4)$$

(c)
$$U = \mathbb{R}^3$$
, $V = \mathbb{R}^4$

$$f((x_1, x_2, x_3)) = (x_1 + \alpha x_3, x_2 - x_3, \alpha x_1, x_1 + \alpha x_2 - \alpha x_3)$$

11.- Sean $V = \{M \in \mathbb{M}_2/M \text{ es simétrica}\}, W = \mathbb{P}_2 \text{ espacios vectoriales cuyas bases canónicas son:}$

Homeas soli.
$$B_{V} = \{\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\} \text{ con } \overrightarrow{e_{1}} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \overrightarrow{e_{2}} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \overrightarrow{e_{3}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$B_{W} = \{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\}, \text{ con } \overrightarrow{u_{1}} = 1, \overrightarrow{u_{2}} = x, \overrightarrow{u_{3}} = x^{2}.$$

Sea $f_m: V \to W$ una aplicación lineal tal que:

$$\begin{split} f_m(\overrightarrow{e_1} + \overrightarrow{e_2}) &= 3\overrightarrow{u_1} + (1-m)\overrightarrow{u_2} + 6\overrightarrow{u_3} \\ f_m(-\overrightarrow{e_2}) &= -\overrightarrow{u_1} - \overrightarrow{u_2} - 2\overrightarrow{u_3} \\ f_m(\overrightarrow{e_2} + \overrightarrow{e_3}) &= (1+m)\overrightarrow{u_1} + 3\overrightarrow{u_3} \\ \text{Se pide:} \end{split}$$

- 1. Hallar la expresión matricial de f_m en las bases dadas.
- 2. ¿Para qué valores de m no se puede definir la aplicación lineal f_m^{-1} ?.
- 3. Estudiar el subespacio vectorial $Ker(f_m)$ en función de m.

- 4. Determinar los valores de m para los cuales $p(x) = -2 + 6x^2$ pertenece al subespacio vectorial $Im(f_m)$.
- 5. Hallar la expresión matricial de f_1 respecto de las bases

$$B_V \ y \ B_W' = \{1 - x^2, x^2, x + x^2\}.$$